150 research outputs found

    A structural model interpretation of Wright's NESS test

    Get PDF
    Although understanding causation is an essential part of nearly every problem domain, it has resisted formal treatment in the languages of logic, probability, and even statistics. Autonomous artificially intelligent agents need to be able to reason about cause and effect. One approach is to provide the agent with formal, computational notions of causality that enable the agent to deduce cause and effect relationships from observations. During the 1990s, formal notions of causality were pursued within the AI community by many researchers, notably by Judea Pearl. Pearl developed the formal language of structural models for reasoning about causation. Among the problems he addressed in this formalism was a problem common to both AI and law, the attribution of causal responsibility or actual causation. Pearl and then Halpern and Pearl developed formal definitions of actual causation in the language of structural models. Within the law, the traditional test for attributing causal responsibility is the counterfactual "but-for" test, which asks whether, but for the defendant's wrongful act, the injury complained of would have occurred. This definition conforms to common intuitions regarding causation in most cases, but gives non-intuitive results in more complex situations where two or more potential causes are present. To handle such situations, Richard Wright defined the NESS Test. Pearl claims that the structural language is an appropriate language to capture the intuitions that motivate the NESS test. While Pearl's structural language is adequate to formalize the NESS test, a recent result of Hopkins and Pearl shows that the Halpern and Pearl definition fails to do so, and this thesis develops an alternative structural definition to formalize the NESS test

    Spiders and snakes: offshoring and agglomeration in the global economy

    Get PDF
    Global production sharing is determined by international cost differences and frictions related to the costs of unbundling stages spatially. The interaction between these forces depends on engineering details of the production process with two extremes being β€˜snakes’ and β€˜spiders’. Snakes are processes whose sequencing is dictated by engineering; spiders involve the assembly of parts in no particular order. This paper studies spatial unbundling as frictions fall, showing that outcomes are very different for snakes and spiders, even if they share some features. Both snakes and spiders have in common a property that lower frictions produce discontinuous location changes and β€˜overshooting’. Parts may move against their comparative costs because of proximity benefits, and further reductions in frictions lead these parts to be β€˜reshored’. Predictions for trade volumes and the number of fragmented stages are quite different in the two cases. For spiders, a part crosses borders at most twice; the value of trade increases monotonically as frictions fall, except when the assembler relocates and the direction of parts trade is reversed. For snakes the volume of trade and number of endogenously determined stages is bounded only by the fragmentation of the underlying engineering process, and lower frictions monotonically increase trade volumes.

    Spray automated balancing of rotors: Methods and materials

    Get PDF
    The work described consists of two parts. In the first part, a survey is performed to assess the state of the art in rotor balancing technology as it applies to Army gas turbine engines and associated power transmission hardware. The second part evaluates thermal spray processes for balancing weight addition in an automated balancing procedure. The industry survey reveals that: (1) computerized balancing equipment is valuable to reduce errors, improve balance quality, and provide documentation; (2) slow-speed balancing is used exclusively, with no forseeable need for production high-speed balancing; (3) automated procedures are desired; and (4) thermal spray balancing is viewed with cautious optimism whereas laser balancing is viewed with concern for flight propulsion hardware. The FARE method (Fuel/Air Repetitive Explosion) was selected for experimental evaluation of bond strength and fatigue strength. Material combinations tested were tungsten carbide on stainless steel (17-4), Inconel 718 on Inconel 718, and Triballoy 800 on Inconel 718. Bond strengths were entirely adequate for use in balancing. Material combinations have been identified for use in hot and cold sections of an engine, with fatigue strengths equivalent to those for hand-ground materials

    Jobs and technology in general equilibrium: A three-elasticities approach

    Get PDF
    The impact of technological progress on jobs and wages has been subject to much empirical and some theoretical work. However, most of this literature has not addressed the general equilibrium interplay between the productive factors that are affected, the sectors in which these factors are used, and the consequent changes in the structure of employment and factor returns. This paper draws on tools from general equilibrium trade theory to provide an integrated approach to these issues. The analysis centres around three key elasticities linking technological change to jobs – the jobs-displacing substitution effect, the job-creating demand effect, and the general-equilibrium effects, through which factors are reallocated between sectors. The results highlight the role of relative factor intensities and the importance of openness in determining the effects of technology on jobs, wages, and structural change. The implications of interaction between non-tradable and tradable sectors are analysed

    Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    Get PDF
    <p><b>Background:</b> Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.</p> <p><b>Methodology/Principal Findings:</b> Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.</p> <p><b>Conclusions/Significance:</b> The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.</p&gt

    Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    Get PDF
    <p><b>Background:</b> Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.</p> <p><b>Methodology/Principal Findings:</b> Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.</p> <p><b>Conclusions/Significance:</b> The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.</p&gt
    • …
    corecore